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Model formulation

Let H and V be Hilbert spaces with V ⊂ H. Assume V is dense in H
and the injection of V into H is compact. Denote by (., .) the inner
product in H, by |.| the corresponding norm, and by V ′ the dual of V .
Consider the damped abstract equation

ytt + Ay + Byt = 0 in (0,∞)
y(0) = y0 ∈ V , yt (0) = y1 ∈ H,

where A ∈ L(V ,V ′) is a selfadjoint coercive operator with D(A
1
2 ) = V ,

and B ∈ L(H) is a nonnegative operator.

Introduce the energy

E(t) =
1
2
{|yt (t)|2 + |A

1
2 y(t)|2}, ∀t ≥ 0.
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Theorem: Dafermos criterion

1970: Dafermos proves: the abstract system is strongly stable

lim
t→∞

E(t) = 0

if and only if
KerB ∩ Ker(A + λI) = {0}, ∀λ ∈ R

where I denotes the identity operator on H.

For the stabilization of single component systems, we refer to the
contributions of Bardos-Lebeau-Rauch, Rauch-Taylor, Russell,
Dafermos, Chen, Haraux, Komornik, Lasiecka, Nakao, Liu, Martinez,
Triggiani, Zuazua,...
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Brief literature

By simultaneous stabilization, we should understand stabilizing a
multi-component system using the same damping mechanism in all
components; the matrix defining the damping is degenerate.

1986: Russell introduces the notion of simultaneous control for
pdes when studying the boundary controllability of the Maxwell’s
equations.
1988: Lions (v.1, Controllability book) analyzes simultaneous
boundary control problems for two uncoupled waves, and for two
uncoupled plates.
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Brief literature

Consider the system of uncoupled wave equations

ujtt − aj∆uj = 0 in Q
uj = 0 on Γ× (0,T )
uj(x ,0) = u0

j (x), ujt (x ,0) = u1
j (x) in Ω, j = 1, 2, ..., q,

where (u0
j ,u

1
j ) ∈ H1

0 (Ω)× L2(Ω) for each j .

1988: Haraux (1988) shows for arbitrary nonempty open set ω:



If
∑q

j=1 uj(x , t) = 0 in ω × (0,T ) then u0
j = 0, u1

j = 0 in Ω, ∀j .
provided that aj 6= ak for all j , k with j 6= k .

If N = 1 and T is large enough, or ω = Ω, then there exists C > 0:
for all j and all (u0

j ,u
1
j ) ∈ L2(Ω)× H−1(Ω)

q∑
j=1

{||u0
j ||

2
L2(Ω) + ||u1

j ||2H−1(Ω)} ≤ C
∫ T

0

∫
ω
|

q∑
j=1

uj(x , t)|2 dxdt

provided that aj 6= ak for all j , k with j 6= k .
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(GCC): Bardos-Lebeau-Rauch (1992): ω is an admissible control
region in time T if every ray of geometric optics enters ω in a time less
than T .

Theorem 1 (CRAS, Paris, 2012)
Let T0 denote the best controllability time for a single wave equation
with unit speed of propagation. Suppose that

T > T0 max{a−
1
2

j ; j = 1, 2, ..., q} and (ω,T ) satisfies (GCC). There
exists a constant C > 0 such that for all (u0

j ,u
1
j ) ∈ H1

0 (Ω)× L2(Ω),
j = 1, 2, ..., q:

q∑
j=1

{||u0
j ||

2
H1

0 (Ω)
+ ||u1

j ||2L2(Ω)} ≤ C
∫ T

0

∫
ω
|

q∑
j=1

ujt (x , t)|2 dxdt ,

with C = C(Ω, ω,T , (aj)j ,q), if and only if aj 6= ak for all j , k with j 6= k .



Lamé systems with localized damping

Given (y0
j , y

1
j )j ∈

([
H1

0 (Ω)
]N × [L2(Ω)

]N)q
, and a function d ∈ L∞(Ω),

d ≥ 0, consider the damped elastodynamic system

yjtt − µj∆yj − (µj + λj)∇div(yj) + d
q∑

k=1

ykt = 0 in Ω× (0,∞)

yj = 0 on Γ× (0,∞)
yj(x ,0) = y0

j (x), yjt (x ,0) = y1
j (x), in Ω,

j = 1, 2, ..., q,

where, for each j , µj and λj are the Lamé constants.
The total energy is given, for all t ≥ 0, by

2E(t) =

q∑
j=1

∫
Ω
{|yjt (x , t)|2 + µj |∇yj(x , t)|2 + (µj + λj)|div(yj(x , t))|2}dx



Lamé systems with localized damping

E is a nonincreasing function of the time variable as

dE
dt

(t) = −
∫

Ω
d(x)

∣∣∣∣∣
q∑

k=1

ykt (x , t)

∣∣∣∣∣
2

dx .

Question 1: Does the energy E decay to zero as time goes to infinity?
Question 2: Under which conditions is the Lamé system exponentially
stable?
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Introduce the Hilbert space H =
([

H1
0 (Ω)

]N × [L2(Ω)
]N)q

over the
field C of complex numbers, equipped with the norm

||Z ||2H =

q∑
j=1

∫
Ω
{|vj(x)|2 + µj |∇uj(x)|2 + (µj + λj)|div(u(x))|2}dx ,

∀Z = ((uj , vj)j) ∈ H.
Set Zj = (yj , yj,t ). The Lamé system may be recast as the first order
abstract evolution equation

Żj = AjZj , Zj(0) = (y0
j , y

1
j ), j = 1, 2, ..., q,

where the dot denotes differentiation with respect to time,and the
unbounded operator Aj is given by



Aj

(
uj
vj

)
=

 vj

µj∆uj + (µj + λj)∇divuj − d
q∑
`=1

v`


with

D(Aj) =
{

(uj , vj) ∈ [H1
0 (Ω)]N × [H1

0 (Ω)]N ;

µj∆uj + (µj + λj)∇divuj ∈ [L2(Ω)]N
}
.

It can be checked that one has (assuming for instance that Γ is C2)

D(Aj) = [H2(Ω) ∩ H1
0 (Ω)]N × [H1

0 (Ω)]N .

Thus, the operator Aj has a compact resolvent. Consequently the
spectrum of Aj is discrete for each j .



With the help of Lumer-Phillips Theorem, (Pazy’s book on semigroups,
p. 14), one can show that the operator A defined by AZ = (AjZj)j is
the infinitesimal generator of a C0-semigroup of contractions on H.
Indeed, D(A) is dense in H, A is dissipative

<(AZ ,Z ) = −
∫

Ω
d(x)|

q∑
j=1

vj(x)|2 dx ≤ 0, ∀Z ∈ D(A),

and (denoting by I the identity operator on H):

R(I − A) = H, by Lax-Milgram Lemma.



Lamé systems with localized damping

Theorem 2: Strong stability

Let ω be a nonempty open subset of Ω. Suppose that d is positive in ω.
The elastodynamic system is strongly stable:

lim
t→∞

E(t) = 0

if and only if the propagation speeds are pairwise distinct:

µj 6= µk and λj + 2µj 6= λk + 2µk , ∀j , k , j 6= k .



Proof sketch:

We may apply Dafermos criterion, or Benchimol or Arendt-Batty strong
stability criterion. It suffices to show that A has no purely imaginary
eigenvalue. One easily checks that 0 ∈ ρ(A). Now, let λ be a nonzero
real number and let Z = (u, v) ∈ D(A) with

AZ = iλZ . (∗)

We shall show that Z = (0,0). It follows from (∗):

d(x)

q∑
j=1

uj = 0 in Ω, and so,− λ2uj − µj∆uj − (µj + λj)∇divuj = 0 in Ω.

Therefore, setting ϕj = div(uj) and `j = 1/(λj + 2µj), it follows
q∑

j=1

uj = 0 in ω, and − λ2`jϕj −∆ϕj = 0 in ω.
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Using elementary algebra, one derives from the last two equations

q∑
j=1

`kj ϕj = 0 in ω, k = 0, 1, ..., q − 1.

The determinant of that linear system is a Vandermonde determinant
and is given by

Dq =
∏

1≤j<k≤q

(`k − `j).

One checks that Dq 6= 0 if and only if λj + 2µj 6= λk + 2µk for all j , k
with j 6= k . In this case, ϕj = 0 in ω for each j .

Dq =
∏

1≤j<k≤q

(`k − `j).



Consequently,
−λ2uj − µj∆uj = 0 in ω.

Repeating the same arguments as above, we find, (setting mj = 1/µj ):

q∑
j=1

mk
j uj = 0 in ω, k = 0, 1, ..., q − 1.

As earlier, one derives uj = 0 in ω for each j if and only if µj 6= µk for all
j , k with j 6= k .

The Imanuvilov-Yamamoto Carleman estimate for the static Lamé
system [Appl. Anal. 2004] then yields uj = 0 in Ω for each j . Hence
Z = (0,0).
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Lamé systems with localized damping

Theorem 3: Exponential stability

Let (y0
j , y

1
j )j ∈

([
H1

0 (Ω)
]N × [L2(Ω)

]N)q
. Suppose

µj 6= µk , λj + 2µj 6= λk + 2µk , and λjµk = λkµj , ∀j , k , j 6= k .

Assume that ω is a neighborhood of ∂Ω, and suppose that the
damping is effective in ω:

∃d0 > 0 : d(x) ≥ d0 a.e. ω.

There exist positive constants M and κ, independent of the initial data,
such that the following energy decay estimate holds:

E(t) ≤ Me−κtE(0), for all t ≥ 0.



Proof Sketch:

Thanks to the semigroup exponential stability criterion of Huang or
Pruss, and given that we already have strong stability, the exponential
decay estimate will follow from the resolvent estimate

∃C0 > 0 : ||(ibI − A)−1||L(H) ≤ C0, ∀b ∈ R.

To this end, let U ∈ H, and let b be a real number. Since the range of
ibI − A is H, there exists Z ∈ D(A) such that

ibZ −AZ = U.



We shall prove
||Z ||H ≤ C0||U||H,

where, here and in the sequel, C0 is a generic positive constant that
may eventually depend on Ω, ω, and d , and the other parameters of
the system, but not on b.

To establish that inequality, first, we note that if Z = (u, v), and
U = (f ,g), then the equation ibZ −AZ = U may be recast as
(1 ≤ j ≤ q):

ibuj − vj = fj

ibvj − µj∆uj − (λj + µj)∇divuj + d
q∑

k=1

vj = gj .
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The proof of the inequality requires several steps which can be
summed up as: first we shall use the multipliers technique to prove

||Z ||2H ≤ C0||U||2H + C0b2
q∑

j=1

∫
Ω
ζ2|uj |2 dx .

Then using elementary algebra, we shall derive

||Z ||2H ≤ C0||U||2H − 2C0b2<
∑

1≤j<k≤q

∫
Ω
ζ2uj ūk dx .

Finally, we will use appropriate multipliers and the parameter
constraints to derive the claimed estimate.
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Taking the inner product with Z on both sides of ibZ −AZ = U, then
taking the real parts, we immediately derive

∫
Ω

d(x)

∣∣∣∣∣
q∑

k=1

vk (x)

∣∣∣∣∣
2

dx ≤ ||U||H||Z ||H.

It now follows from the equation ibuj − vj = fj

b2
∫

Ω
d(x)

∣∣∣∣∣
q∑

k=1

uk (x)

∣∣∣∣∣
2

dx ≤ 2
∫

Ω
d(x)

∣∣∣∣∣
q∑

k=1

vk (x)

∣∣∣∣∣
2

dx

+2
∫

Ω
d(x)

∣∣∣∣∣
q∑

k=1

fk (x)

∣∣∣∣∣
2

dx

≤ 2||U||H||Z ||H + C0||U||2H.



Let α > 0 and β be real constants. Multiply the equation

ibvj − µj∆uj − (λj + µj)∇divuj + d
q∑

k=1

vj = gj by βūj , integrate on Ω,

take the sum over j , and take real parts to find

β<
∫

Ω

q∑
j=1

gj ūj dx

= β<
∫

Ω
(

q∑
j=1

{ibvj − µj∆uj − (λj + µj)∇divuj + d
q∑

k=1

vk )ūj}dx .



From which, one derives (Green’s formula, Cauchy Schwarz inequality,
and equation ibuj − vj = fj ):

β

q∑
j=1

(
µj |∇uj |22 + (λj + µj)|divuj |22−|vj |22

)
≤ C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H

)
.

Now, multiply the equation ibvj −µj∆uj − (λj +µj)∇divuj + d
q∑

k=1

vj = gj

by 2αx∇ūj , take real parts and use Green’s formula to derive:



q∑
j=1

(
αN|vj |22 − (N − 2)α

(
µj |∇uj |22 + (λj + µj)|divuj |22

))
≤ C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H

)
+C0

q∑
j=1

∫
∂Ω

(µj |∂νuj |2 + (λj + µj)|∂νuj · ν|2) dΓ.



Gathering those two inequalities, and choosing α and β with
α(N − 2) < β < αN, it follows:

q∑
j=1

(
|vj |22 +

(
µj |∇uj |22 + (λj + µj)|divuj |22

))
≤ C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H

)
+C0

q∑
j=1

∫
∂Ω

(µj |∂νuj |2 + (λj + µj)|∂νuj · ν|2) dΓ.

Let ω1 be another neighborhood of ∂Ω that is strongly contained in ω.
Let h ∈

[
C1(Ω̄)

]N be a vector field with

h = 0 in Ω \ ω1, h = ν on ∂Ω.



Now, multiply the equation ibvj −µj∆uj − (λj +µj)∇divuj + d
q∑

k=1

vj = gj

by 2h∇ūj , take real parts and use Green’s formula to derive:

C0

q∑
j=1

∫
∂Ω

(µj |∂νuj |2 + (λj + µj)|∂νuj · ν|2) dΓ.

≤ C0

q∑
j=1

∫
ω1

{
|vj |2 +

(
µj∇uj |2 + (λj + µj)|divuj |2

)}
dx

+C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H

)
.



Let η ∈ C1(Ω̄) be a nonnegative function with

0 ≤ η ≤ 1 in Ω, η = 1 in ω1 and η = 0 in Ω \ ω2,

where ω2 is another neighborhood of ∂Ω with ω1 b ω2 b ω.

Multiplying the equation ibvj − µj∆uj − (λj + µj)∇divuj + d
q∑

k=1

vj = gj

by η2ūj , taking real parts and using Green’s formula, we derive,
(assuming |b| > 1):

C0

q∑
j=1

∫
ω1

{
|vj |2 +

(
µj∇uj |2 + (λj + µj)|divuj |2

)}
dx

≤ C0b2
q∑

j=1

∫
ω2

|uj |2 dx

+C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H

)
.



Now, let ζ ∈ C1(Ω̄) be a nonnegative function with

0 ≤ ζ ≤ 1 in Ω, ζ = 1 in ω2 and ζ = 0 in Ω \ ω.

We have

C0b2
q∑

j=1

∫
ω2

|uj |2 dx ≤ C0b2
∫

Ω
ζ2

∣∣∣∣∣∣
q∑

j=1

uj

∣∣∣∣∣∣
2

dx

−2C0b2<
∑

1≤j<k≤q

∫
Ω
ζ2uj ūk dx .

Therefore

b2
q∑

j=1

|uj |22 + ||Z ||2H ≤ −2C0b2<
∑

1≤j<k≤q

∫
Ω
ζ2uj ūk dx

+C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H

)
.



Multiply the equation

−b2uj − µj∆uj − (λj + µj)∇divuj + d
q∑
`=1

v` = gj + ibfj by µkζ
2ūk , and

the equation −b2uk − µk ∆uk − (λk + µk )∇divuk + d
q∑
`=1

v` = gk + ibfk

by µjζ
2ūj , then taking real parts and using Green’s formula, we find

−b2µk<
∫

Ω
ζ2uj ūk dx + µjµk<

∫
Ω
ζ2∇uj∇ūk dx

+2µjµk<
∫

Ω
ζūk · (∇ζ∇uj) + (λj + µj)µk<

∫
Ω
ζ2divujdivūk dx

+2(λj + µj)µk<
∫

Ω
ζ(divuj)ūk · ∇ζ dx

= µk

∫
Ω
ζ2

(
gj + ibfj − d

q∑
`=1

v`

)
ūk ,



and

−b2µj<
∫

Ω
ζ2ūjuk dx + µjµk<

∫
Ω
ζ2∇ūj∇uk dx

+2µjµk<
∫

Ω
ζūj · (∇ζ∇uk ) + (λk + µk )µj<

∫
Ω
ζ2divūjdivuk dx

+2(λk + µk )µj<
∫

Ω
ζ(divuk )ūj · ∇ζ dx

= µj

∫
Ω
ζ2

(
gk + ibfk − d

q∑
`=1

v`

)
ūj .

Subtracting the last equation from the preceding one, and taking the
sum over the indices j and k , we derive



−b2
∑

1≤j<k≤q

<
∫

Ω
ζ2ūjuk dx

=
∑

1≤j<k≤q

2µjµk

µk − µj
<
∫

Ω
ζ(ūj · (∇ζ∇uk )− ūk · (∇ζ∇uj)) dx

+
∑

1≤j<k≤q

2(λk + µk )µj

µk − µj
<
∫

Ω
ζ(ūjdivuk )− ūkdivuj) · ∇ζ dx

+
∑

1≤j<k≤q

1
µk − µj

∫
Ω
ζ2(gk + ibfk − d

q∑
`=1

v`)ūj dx

−
∑

1≤j<k≤q

1
µk − µj

∫
Ω
ζ2(gj + ibfj − d

q∑
`=1

v`)ūk dx .



Cauchy-Schwarz inequality then yields∣∣∣∣∣∣b2
∑

1≤j<k≤q

<
∫

Ω
ζ2ūjuk dx

∣∣∣∣∣∣ ≤ C0

q∑
j=1

|uj |22

+C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H

)
.

Hence

b2
q∑

j=1

|uj |22 + ||Z ||2H ≤ C0

q∑
j=1

|uj |22

+C0

(
||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H

)
.



Choosing |b| large, enough, and using Young inequality, we get the
claimed inequality for |b| > b0 form some b0 > 0. The inequality for all
real numbers b follows from the continuity of the resolvent for
|b| ≤ b0.

A result of Haraux on the equivalence between observability and
exponential stability (Portugal Math., 1989) shows:
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exponential stability (Portugal Math., 1989) shows:



An observability result

Let T > 0. Let ω be a neighborhood of the boundary of Ω.
Consider the uncoupled elastodynamic system

yjtt − µj∆yj − (µj + λj)∇div(yj) = 0 in Ω× (0,T )
yj = 0 on Γ× (0,T )
yj(x ,0) = y0

j (x), yjt (x ,0) = y1
j (x), in Ω,

j = 1, 2, ..., q.

There exists T0 > 0 such that for any T > T0, there exists C > 0:

E(0) ≤
∫ T

0

∫
ω
|

q∑
j=1

yjt (x , t)|2 dxdt ,

provided that

µj 6= µk , λj + 2µj 6= λk + 2µk , and λjµk = λkµj , ∀j , k , j 6= k .
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And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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