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Notations

Ω= bounded domain in RN , N ≥ 1,
Γ= boundary of Ω is smooth,
T > 0, Q = Ω× (0,T )
ω = nonvoid open subset in Ω.
The coefficients matrix (bij)i,j , satisfies:

bij ∈ C1(Ω̄); bij = bji , ∀i , j = 1,2, ...,N,
∃a0 > 0 : bij(x)zizj ≥ a0zizi , ∀(x , z) ∈ Ω̄× RN .

The Einstein summation convention on repeated indices is used
throughout.
a, b, c, d lie in L∞(0,T ; Ls(Ω)), s ≥ max(2,N) for N 6= 2,
and s > 2 for N = 2.
kij , lij lie in W 1,∞

0 (0,T ; Ls(Ω)).



Controllability

Consider the controllability problems: Given (z0, z1) and (w0,w1), and
ε > 0, find a control h such that if (z,w) solves the system

ztt − ∂i(bij(x)∂jz) + az + cw − div(k11z)− (l11z)t
−div(k21w)− (l21w)t = h1ω in Q

wtt − ∂i(bij(x)∂jw) + bz + dw − div(k12z)− (l12z)t
−div(k22w)− (l22w)t = 0 in Q

z = 0, w = 0 on Σ = ∂Ω× (0,T )

z(0) = z0; zt (0) = z1 w(0) = w0; wt (0) = w1 in Ω,



then (exact controllability)

z(T ) = 0, zt (T ) = 0, w(T ) = 0, wt (T ) = 0 in Ω,

or else (approximate controllability)

||z(T )||1 + ||zt (T )||2 ≤ ε, ||w(T )||1 + ||wt (T )||2 ≤ ε.



Remark

For exact controllability, T and ω must be large enough.

For approximate controllability, only T must be large enough.
Lions’ HUM reduces exact controllability to an inverse
(observability) estimate for the adjoint system.
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Brief literature

Dáger (2006), Ω = (0,1), T ≥ 4, b = −1O, all other l.o.t vanish.
Proved a weaker estimate; see Theorem 2 in the sequel.

Tebou (2008), multi-d, b = −1O, all other l.o.t vanish.
Rosier-de Teresa (2011), Ω = (0,1), T ≥ 4, b = −a(x)2,
a ∈ L∞(Ω), all other l.o.t vanish.
Alabau-Leautaud (2012), c = b, d = a are smooth enough, and
||b||∞ is small, all other l.o.t vanish, ω and O may have empty
intersection, and both satisfy
(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of
geometric optics enters ω, (resp. O) in a time less than T .

But the controllability time blows up as the norm of the coupling
function b goes to zero; this is not natural. One would expect the
controllability cost to blow up as the coupling goes to zero, but not
the controllability time.



Brief literature

Dáger (2006), Ω = (0,1), T ≥ 4, b = −1O, all other l.o.t vanish.
Proved a weaker estimate; see Theorem 2 in the sequel.
Tebou (2008), multi-d, b = −1O, all other l.o.t vanish.

Rosier-de Teresa (2011), Ω = (0,1), T ≥ 4, b = −a(x)2,
a ∈ L∞(Ω), all other l.o.t vanish.
Alabau-Leautaud (2012), c = b, d = a are smooth enough, and
||b||∞ is small, all other l.o.t vanish, ω and O may have empty
intersection, and both satisfy
(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of
geometric optics enters ω, (resp. O) in a time less than T .
But the controllability time blows up as the norm of the coupling
function b goes to zero; this is not natural. One would expect the
controllability cost to blow up as the coupling goes to zero, but not
the controllability time.



Brief literature

Dáger (2006), Ω = (0,1), T ≥ 4, b = −1O, all other l.o.t vanish.
Proved a weaker estimate; see Theorem 2 in the sequel.
Tebou (2008), multi-d, b = −1O, all other l.o.t vanish.
Rosier-de Teresa (2011), Ω = (0,1), T ≥ 4, b = −a(x)2,
a ∈ L∞(Ω), all other l.o.t vanish.

Alabau-Leautaud (2012), c = b, d = a are smooth enough, and
||b||∞ is small, all other l.o.t vanish, ω and O may have empty
intersection, and both satisfy
(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of
geometric optics enters ω, (resp. O) in a time less than T .
But the controllability time blows up as the norm of the coupling
function b goes to zero; this is not natural. One would expect the
controllability cost to blow up as the coupling goes to zero, but not
the controllability time.



Brief literature

Dáger (2006), Ω = (0,1), T ≥ 4, b = −1O, all other l.o.t vanish.
Proved a weaker estimate; see Theorem 2 in the sequel.
Tebou (2008), multi-d, b = −1O, all other l.o.t vanish.
Rosier-de Teresa (2011), Ω = (0,1), T ≥ 4, b = −a(x)2,
a ∈ L∞(Ω), all other l.o.t vanish.
Alabau-Leautaud (2012), c = b, d = a are smooth enough, and
||b||∞ is small, all other l.o.t vanish, ω and O may have empty
intersection, and both satisfy
(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of
geometric optics enters ω, (resp. O) in a time less than T .
But the controllability time blows up as the norm of the coupling
function b goes to zero; this is not natural. One would expect the
controllability cost to blow up as the coupling goes to zero, but not
the controllability time.



Observability estimates

Consider the coupled (adjoint) system

utt − ∂i(bij(x)∂ju) + au + bv + k11 · ∇u + l11ut
+k12 · ∇v + l12vt = 0 in Q

vtt − ∂i(bij(x)∂jv) + cu + dv + k21 · ∇u + l21ut
+k22 · ∇v + l22vt = 0 in Q

u = 0, v = 0 on Σ = ∂Ω× (0,T )

u(0) = u0; ut (0) = u1 v(0) = v0; vt (0) = v1 in Ω.

The coupled system is well-posed in H1
0 (Ω)× L2(Ω)× L2(Ω)×H−1(Ω).



Introduce the energies:

Eu(t) =
1
2

∫
Ω
{|ut (x , t)|2 + (bij(x)∂ju(x , t)∂iu(x , t)}dx ,

Êu(t) =
1
2

(
||u(., t)||2L2(Ω) + ||ut (., t)||2H−1(Ω)

)
.

For each t ∈ [0,T ], set

E(t) = Eu(t) + Êv (t), Ê(t) = Êu(t) + Êv (t).



Introduce a function q ∈ C2(Ω̄) satisfying for some m0 ≥ 4:

i)
(
2bil(bkjqxk )xl − bij,xl bklqxk

)
zizj ≥ m0bijzizj , ∀(x , z) ∈ Ω̄× RN .

ii) min
{
|∇q(x)|; x ∈ Ω̄

}
> 0.

iii) 1
4bij(x)qxi (x)qxj (x) ≥ R2

1 ≥ R2
0 > 0, ∀x ∈ Ω̄,

where R0 = min
{√

q(x); x ∈ Ω̄
}

, and R1 = max
{√

q(x); x ∈ Ω̄
}

. Let
ν be the unit normal pointing into the exterior of Ω, and set

Γ0 =
{

x ∈ ∂Ω; bijνiqxj (x) > 0
}
.



Theorem 1 (AMOP 2012)

Let ω and O be neighborhoods of Γ0. Let r ∈ D(0,T ) be an
appropriate cutoff function. Assume that a, c, d ∈ L∞(0,T ; Ls(Ω)),
with s > 2 for N ∈ {1, 2} and s ≥ N for N ≥ 3. Let b ∈ L∞(Q), and let
kij ∈ (W 1,s

0 (Q) ∩ L∞(Q))N , lij ∈W 1,s
0 (Q) ∩ L∞(Q), i , j = 1,2. Suppose

that k12 ≡ 0, l12 ≡ 0, supp(k22) ⊂ ω0 × (0,T ), and
supp(l22) ⊂ ω0 × (0,T ), where ω0 is another neighborhood of Γ0
whose closure ω̄0 is contained in O ∩ ω. Suppose that there exists
b0 > 0 such that b(x , t) ≥ b0 for almost every (x , t) in O × (0,T ).

For every T > 2R1, there exists a positive constant C such that for all
(u0,u1) ∈ H1

0 (Ω)× L2(Ω), and (v0, v1) ∈ L2(Ω)× H−1(Ω), one has the
observability estimate:

E(0) ≤ C
∫ T

0

∫
ω

(r2|ut |2 + |u|2) dxdt

for the corresponding solution pair (u, v) of the adjoint system.
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Some comments

1 No smallness assumption is made on the zeroth order couplings.

2 The controllability time is the same as for a single wave equation.
3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness

purposes.
4 The support constraints on k22 and l22 are used in the proof of the

observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 Once Theorem 1 is proven, the Hilbert uniqueness method
(H.U.M) of Lions may be used to show that the optimal control for
the controllability problem is given by h = (r2ût )t − û where (û, v̂)
denotes an appropriate solution of the adjoint system.



Some comments

1 No smallness assumption is made on the zeroth order couplings.
2 The controllability time is the same as for a single wave equation.

3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness
purposes.

4 The support constraints on k22 and l22 are used in the proof of the
observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 Once Theorem 1 is proven, the Hilbert uniqueness method
(H.U.M) of Lions may be used to show that the optimal control for
the controllability problem is given by h = (r2ût )t − û where (û, v̂)
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denotes an appropriate solution of the adjoint system.



Some comments

1 No smallness assumption is made on the zeroth order couplings.
2 The controllability time is the same as for a single wave equation.
3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness

purposes.
4 The support constraints on k22 and l22 are used in the proof of the

observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 Once Theorem 1 is proven, the Hilbert uniqueness method
(H.U.M) of Lions may be used to show that the optimal control for
the controllability problem is given by h = (r2ût )t − û where (û, v̂)
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Proof of Theorem 1: key elements

Energy estimates show

E(0) ≤ C
∫

Q0

{|ut |2 + |∇u|2 + |v |2}dxdt ,

where Q0 is an appropriate subset of Q.

Fu-Yong-Zhang Carleman estimate shows∫
Q0

(|ut |2 + |∇u|2 + |v |2) dxdt ≤ Ce−µλE(0) + C
∫ T

0
r2
∫
ω0

|v |2 dxdt

+C
∫ T

0

∫
ω

(r2|ut |2 + |u|2) dxdt

where λ > 0 is large enough, and µ > 0 is fixed.

Use a localizing argument to absorb C
∫ T

0
r2
∫
ω0

|v |2 dxdt .
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A Carleman estimate for two coupled systems

Lemma 1
Let bij be given as above. Assume that Γ0 as in Theorem 1, and ω is
any neighborhood of Γ0. Then there exists λ0 > 1 and a positive
constant C = C(Ω,T ), such that for all a, b, c, d ∈ L∞(0,T ; Ls(Ω)),
with s > 2 for N = 2 and s ≥ max(2,N) for N 6= 2, all λ ≥ λ0 and all
u, v ∈ C([0,T ]; L2(Ω)) satisfying
u(x ,0) = u(x ,T ) = v(x ,0) = v(x ,T ) = 0 for x ∈ Ω, Pu ∈ H−1(Q),
Pv ∈ H−1(Q), and (u,Pη) = 〈Pu, η〉H−1(Q),H1

0 (Q),

(v ,Pη) = 〈Pv , η〉H−1(Q),H1
0 (Q), ∀η ∈ H1

0 (Q) with Pη ∈ L2(Q),one has:



A Carleman estimate for two coupled systems

λ
∫

Q e2λϕ(u2 + v2) dxdt
≤ C

(
||eλϕ(Pu + au + bv)||2H−1(Q)

+ ||eλϕ(Pv + cu + dv)||2H−1(Q)

)
+ C
λ(2−2N/s)

(
||eλϕ(au + bv)||2L2(0,T ;H−N/s(Ω))

+||eλϕ(cu + dv)||2L2(0,T ;H−N/s(Ω))

)
+Cλ2||eλϕu||2L2(0,T ;L2(ω))

+ Cλ2||eλϕv ||2L2(0,T ;L2(ω))
.



Set

δ = ||a||∞,s + ||b||∞,s + ||c||∞,s + ||d ||∞,s +
2∑

i,j=1

||div(kij)||∞,s

+
2∑

i,j=1

||lij,t ||∞,s

δ0 =
2∑

i,j=1

||kij ||∞ +
2∑

i,j=1

||lij ||∞

where ||.||∞,s = ||.||L∞(0,T ;Ls(Ω)), and ||.||∞ = ||.||L∞(Q).



Theorem 2. (AMOP 2012)
Let ω, O, a, d and s be as in Theorem 1, and suppose that
b ∈ L∞(0,T ; Ls(Ω)), c ∈ L∞(Q), and there exists b0 > 0 such that
b(x , t) ≥ b0 for almost every (x , t) in O × (0,T ). Let
kij ∈ (W 1,s

0 (Q) ∩ L∞(Q))N , lij ∈W 1,s
0 (Q) ∩ L∞(Q), i , j = 1,2. Suppose

that k21 ≡ 0, l21 ≡ 0, supp(kij) ⊂ ω0 × (0,T ), and
supp(lij) ⊂ ω0 × (0,T ).

For every T > 2R1, there exists a positive constant
C0 = C0(Ω, ω,O,T ,N, s) such that for all (u0,u1) ∈ L2(Ω)× H−1(Ω),
and (v0, v1) ∈ H1

0 (Ω)× L2(Ω), one has the observability estimate:

Ê(0)2 ≤ eC0(1+δ0+δ
2s

3s−2N )

(∫ T

0

∫
ω
|u|2 dxdt

)
(Êu(0) + Ev (0))

for all solution pair (u, v) of the adjoint system.
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Proof of Theorem 2: Main ideas

Step 1. Prove the energy estimates

Ê(t) ≤
[
exp C0(1 + δ0 + δ

N+s
2s )|t − τ |

]
Ê(τ), ∀τ, t ∈ [0,T ],

∫ T ′0

T0

hÊ(t) dt ≤ C0(1 + δ + δ0)

∫
Q0

{|u|2 + |v |2}dxdt ,

where h is an appropriate cut-off function.
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Ê(t) ≤
[
exp C0(1 + δ0 + δ

N+s
2s )|t − τ |

]
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Step 2. Derive from Step 1
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∫ T

0
r2
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ω0

|v |2 dxdt ,

for some constants C0 = C0(Ω,T ,N, s, ω) > 0, and for all
λ ≥ C0(1 + δ0 + δ

2s
3s−2N ).

Step 4. Use a localizing argument to absorb eC0λ
∫ T

0 r2 ∫
ω0
|v |2 dxdt .
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Let a, b, c, d ∈ Ls(Ω), with s as in Theorem 1. Assume now lij ≡ 0,
and kij ≡ 0, i , j = 1,2. Let ω, O, be as in Theorem 1, and suppose that
there exists b0 > 0 such that b(x) ≥ b0 for almost every x in O.
Further assume that either:

a ≥ 0, d ≥ 0, 2a− |b + c| ≥ 0, and 2d − |b + c| ≥ 0, a.e. x ∈ Ω

or else

a ≥ 0, d ≥ 0, a.e. x ∈ Ω, 1−C2
s |b + c|s > 0, and λ2

0−|b + c|s > 0,

where λ2
0 is the first eigenvalue of the operator −∂i(bij(x)∂j) under

Dirichlet boundary conditions, and Cs denotes the best constant in the
Sobolev inequality:

||w ||22s
s−2
≤ C2

s

∫
Ω

bij(x)∂jw(x)∂iw(x) dx , ∀w ∈ H1
0 (Ω).



Let a, b, c, d ∈ Ls(Ω), with s as in Theorem 1. Assume now lij ≡ 0,
and kij ≡ 0, i , j = 1,2. Let ω, O, be as in Theorem 1, and suppose that
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0 is the first eigenvalue of the operator −∂i(bij(x)∂j) under

Dirichlet boundary conditions, and Cs denotes the best constant in the
Sobolev inequality:

||w ||22s
s−2
≤ C2

s

∫
Ω

bij(x)∂jw(x)∂iw(x) dx , ∀w ∈ H1
0 (Ω).



Theorem 3
Assume the hypotheses just stated. For every T > 2R1, there exists a
positive constant C0 = C0(Ω, ω,O,T ,N, s) such that for all
(u0,u1) ∈ H1

0 (Ω)× L2(Ω), and (v0, v1) ∈ (H2(Ω) ∩ H1
0 (Ω))× H1

0 (Ω),
one has the observability estimate:

(Eu(0) + Ev (0))2 ≤ eC0(1+δ
2s

3s−2N )

(∫ T

0

∫
ω
|ut |2 dxdt

)
(Eu(0) + Ěv (0))

for all solution pair (u, v) of the adjoint system, and where
2Ěv (0) = ||v0||2H2(Ω)

+ ||v1||2H1
0 (Ω)

.



Sketch of the proof of Theorem 3

For this proof, we shall use Theorem 2, and the following result

Lemma 2
Let a, b, c, and d be given as in Theorem 3. Then there exists a
positive constant C0 = C0(Ω,b + c) such that

|| − ∂i(bij(x)∂ju) + au + bv ||2H−1(Ω)
+ || − ∂i(bij(x)∂jv) + cu + dv ||2H−1(Ω)

≥ C0

∫
Ω
{bij(x)∂ju∂iu + bij(x)∂jv∂iv}dx , ∀u, v ∈ H1

0 (Ω).

Set ŵ = ut and ẑ = vt . Then these functions solve the system
ŵtt − ∂i(bij(x)∂jŵ) + aŵ + bẑ = 0 in Q
ẑtt − ∂i(bij(x)∂j ẑ) + cŵ + dẑ = 0 in Q
ŵ = 0, ẑ = 0 on Σ = ∂Ω× (0,T )
ŵ(0) = u1 ∈ L2(Ω); ŵt (0) = ∂i(bij(x)∂ju0)− au0 − bv0 ∈ H−1(Ω)
ẑ(0) = v1 ∈ H1

0 (Ω); ẑt (0) = ∂i(bij(x)∂jv0)− cu0 − dv0 ∈ L2(Ω).
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ẑ(0) = v1 ∈ H1
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Introduce the following energy associated with that system

Êŵ ,ẑ(t) = Êŵ (t) + Êẑ(t) ∀t ∈ [0,T ].

Thanks to Theorem 2, one has:

Êŵ ,ẑ(0)2 ≤ eC0(1+δ
2s

3s−2N )

(∫ T

0

∫
ω
|ŵ |2 dxdt

)
(Êŵ (0) + Eẑ(0)).

Some elementary calculations show that

Êŵ (0) + Eẑ(0) ≤ C0(Eu(0) + Ěv (0)),

while Lemma 2 yields

Êŵ ,ẑ(0) ≥ C0(Eu(0) + Ev (0)).
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Some elementary calculations show that
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Êŵ (0) + Eẑ(0) ≤ C0(Eu(0) + Ěv (0)),
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Theorem 4
Suppose that the hypotheses of Theorem 3 hold. For every T > 2R1,
there exists a positive constant C = C(Ω, ω,O,T ,N, s,a,b, c,d) such
that for all (u0,u1) ∈ (H2(Ω) ∩ H1

0 (Ω))× H1
0 (Ω), and

(v0, v1) ∈ H1
0 (Ω)× L2(Ω), one has the observability estimate:

Ěu(0) + Ev (0) ≤ C
∫ T

0

∫
ω
{|ut |2 + |utt |2}dxdt .



Mindlin-Timoshenko plate

ρ1ytt − kdiv(∇y + z) = 0 in Ω× (0,∞)
ρ2ztt − µ∆z − (λ+ µ)∇divz + k(∇y + z) + azt = 0 in Ω× (0,∞)
y = 0, z = 0 on ∂Ω× (0,∞)
y(.,0) = y0 ∈ H1

0 (Ω), yt (.,0) = y1 ∈ L2(Ω),
z(.,0) = z0 ∈ [H1

0 (Ω)]N , zt (.,0) = z1 ∈ [L2(Ω)]N .

In the one-dimensional setting, the system , known as the Timoshenko
beam equations, describes the motion of a beam when the effects of
rotatory inertia are accounted for; the transverse displacement is
represented by y while z denotes the shear angle displacement.
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In 2D, that system is known as the Mindlin-Timoshenko plate
equations, where y represents the vertical deflection and z stands for
the rotation angles of a filament.

The constants ρ1, ρ2, k , and µ are physical constants and are all
positive. In particular, the constants λ and µ are the Lamé constants
with λ+ µ > 0.
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Mindlin-Timoshenko plate

2009: Fernández-Sare shows that the system is polynomially stable.

2011: Nicaise generalizes and improves Fernandez-Sare result to
account for anisotropic cases, but still, only polynomial stability is
established.

It is well-known that the indirectly damped Timoshenko beam, (N = 1),
is exponentially stable if and only if

(∗) k
ρ1

=
2µ+ λ

ρ2
.

Questions: Is the Mindlin-Timoshenko system exponentially stable
under (∗)? What happens when (∗) fails?
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To study the stabilization problem at hand, we are going to recast the
plate system as an abstract evolution system. To this end, setting

Z =


y
y ′

z
z ′

, the Mindlin-Timoshenko system may then be recast as:

Z ′ −AZ = 0 in (0,∞), Z (0) =


y0

y1

z0

z1


where the unbounded operator A is given by



Mindlin-Timoshenko plate

A =


0 I 0 0

k
ρ1

∆ 0 k
ρ1

div 0
0 0 0 I

− k
ρ2
∇ 0 µ

ρ2
∆ + λ+µ

ρ2
∇div− k

ρ2
I − a

ρ2
I


with,

D(A) =
{

(u, v ,w , z) ∈
(
H1

0 (Ω)
)2 ×

(
[H1

0 (Ω)]N
)2

;

kdiv(∇u + w) ∈ L2(Ω),

and µ∆w + (λ+ µ)∇divw − k(∇u + w)− az ∈ [L2(Ω)]N
}

It can be checked that one has (assuming for instance that Γ is C2)

D(A) = (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)× ([H2(Ω)]N ∩ [H1
0 (Ω)]N)× [H1

0 (Ω)]N .



Mindlin-Timoshenko plate

Thus, the operator A has a compact resolvent. Consequently the
spectrum of A is discrete.

Introduce the Hilbert space over the field C of complex numbers
H = H1

0 (Ω)× L2()× [H1
0 (Ω)]N × [L2(Ω)]N , equipped with the norm

||Z ||2H = ρ1|v |22 + k |∇u + w |22 + ρ2|z|22 + µ|∇w |22 + (λ+ µ)|divw |22,

∀Z = (u, v ,w , z) ∈ H.



Mindlin-Timoshenko plate

Theorem 5: Strong stability

Suppose that ω is an arbitrary nonempty open set in Ω. Let the
damping coefficient a be positive in ω. The operator A generates a C0
semigroup of contractions (S(t))t≥0 on the Hilbert space H, which is
strongly stable:

lim
t→∞
||S(t)Z 0||H = 0, ∀Z 0 ∈ H.



Proof of Theorem 5

First, we shall prove that the unbounded operator A generates a C0
semigroup of contractions (S(t))t≥0, then we shall show that
iR ⊂ ρ(A).
We have:

D(A) = H and the operator A is dissipative, as:

< (AZ ,Z ) = −
∫

Ω
a(x)|z(x)|2 dx ≤ 0, ∀Z = (u, v ,w , z) ∈ D(A).

I − A is onto, by Lax-Milgram Lemma, (I denotes the identity
operator).



To prove strong stability, it suffices, thanks to a Benchimol strong
stability criterion, for linear operators with compact resolvent, to show
that A has no imaginary eigenvalue. One easily checks that zero is not
an eigenvalue of A. Now, let b be a nonzero real number, and let
Z = (u, v ,w , z) ∈ D(A) such that AZ = ibZ . We shall prove that
Z = (0,0,0,0). Note that AZ = ibZ may be recast as:

−b2u − k̂div(∇u + w) = 0 in Ω

−b2w − µ̂∆w − (µ̂+ )̂∇divw + ǩ(∇u + w) + ibǎw = 0 in Ω.

One easily checks that w = 0 in ω, by multiplying the first equation by
ū, the second by w̄ , integrating by parts and taking the imaginary
parts. Using the second equation, it follows that ∇u = 0 in ω; so, using
the first equation, one derives that u = 0 in ω as b is nonzero.



Now, thanks to a Carleman estimate of imanuvilov-Puel for elliptic
equations, there exist positive constants C, τ0 ≥ 1 and s0 ≥ 1 such
that, for every τ ≥ τ0 and every s ≥ s0, the component u satisfies:

sτ2
∫

Ω
{|∇u|2 + s2τ2ϕ2|u|2}e2sϕ dx

≤ C
∫

Ω
{b4|u|2 + |divw |2}e2sϕ dx

+Csτ2
∫
ω
{|∇u|2 + s2τ2ϕ2|u|2}e2sϕ dx , ∀b ∈ R,

where ϕ is an appropriate weight function, and C is independent of s,
τ , and b.



Similarly, according a Carleman estimate of in Imanuvilov-Yamamoto
for the static Lamé system, there exist positive constants C, τ1 ≥ 1 and
s1 ≥ 1 such that, for every τ ≥ τ1 and every s ≥ s1, the component w
satisfies:

τ2
∫

Ω
{|∇w |2 + s2τ2ϕ2|w |2}e2sϕ dx

≤ C
∫

Ω
{(b4 + 1)|w |2 + |∇u|2}e2sϕ dx

+Cτ2
∫
ω
{|∇w |2 + s2τ2ϕ2|w |2}e2sϕ dx , ∀b ∈ R,

where ϕ is an appropriate weight function, and C is independent of s,
τ and b.

Combining those two estimates, noticing that |divw(x)| ≤ |∇w(x)| for
almost every x in Ω, and choosing s and τ large enough, one can use
the left hand side to absorb the first integrals in the right hand side.
Next, using the fact that u = 0 and w = 0 in , one derives that u = 0
and w = 0 in ; hence Z = (0,0,0,0).
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Theorem 6: exponential stability
Suppose that the damping coefficient a satisfies:

∃a0 > 0 : a(x) ≥ a0, a.e. x ∈ Ω.

Assume that k
ρ1

= 2µ+λ
ρ2

. The semigroup (S(t))t≥0 is exponentially
stable, viz., there exist positive constants M and ζ with:

||S(t)Z 0||H ≤ M exp(−ζt)||Z 0||H, ∀Z 0 ∈ H.



Proof of Theorem 6:Main ideas

We shall use the frequency domain approach, which amounts to
showing the two facts :

1 iR ⊂ ρ(A), and
2 sup{||(ib −A)−1||L(H); b ∈ R} <∞.

Thanks to the proof of Theorem 5, we already have the first point. It
remains to prove the second point. For this purpose, it suffices to show
that there exists C0 > 0 such that for every U ∈ H, one has:

||(ib −A)−1U||H ≤ C0||U||H, ∀b ∈ R,

where hereafter, C0 denotes a generic positive constant that may
eventually depend on Ω, ω, and the other parameters of the system,
but never on b.



Let b ∈ R, U = (f ,g,h, l) ∈ H, and let Z = (u, v ,w , z) ∈ D(A) such
that

(ib −A)Z = U.

We shall prove ||Z ||H ≤ C0||U||H. To this end, multiply both sides of
the equation by Z , then take the real part of the inner product in H to
derive :∫

Ω
a(x)|z(x)|2 dx = <(U,Z ) ≤ ||U||H||Z ||H, or |z|22 ≤ C0||U||H||Z ||H.

Equation (ib −A)Z = U may be recast as:
ibu − v = f
ibv − k̂div(∇u + w) = g
ibw − z = h
ibz − µ̂∆w − (λ̂+ µ̂)∇divw + ǩ(∇u + w) + ǎz = l .

Thanks to the estimate on z, we derive from the third equation

b2
∫

Ω
|w(x)|2 dx ≤ C0||U||H||Z ||H + C0||U||2H.



Multiplying the last equation in by w̄ , taking the real parts, and
integrating by parts over Ω, one finds

<ib
∫

Ω
z · w̄ dx +

∫
Ω
{µ̂|∇w |2 + (λ̂+ µ̂)|divw |2}dx

= <
∫

Ω
{(l − ǎz) · w̄ dx − ǩ<

∫
Ω

(∇u + w) · w̄ dx .

With Cauchy-Schwarz inequality, one readily derives, for every b with
|b| > 1:

|z|22 +

∫
Ω
{µ̂|∇w |2 + (λ̂+ µ̂)|divw |2}dx

≤ C0(||U||H||Z ||H + |b|−1||U||
1
2
H||Z ||

3
2
H)



At this stage, we note that the last inequality provides a good estimate
for w ; so, in order to complete the proof of Theorem 6, it remains to get
estimates for u and v . This is the crucial point in the proof. First, we
will estimate |v |2 in terms of |∇u + w |2, then we will estimate
|∇u + w |2. In particular, the factor |b|−1 will be very helpful in the proof
of the polynomial decay estimate given by the next theorem, leading to
a better decay estimate; it can be dropped in the rest of the proof of
Theorem 6 for |b| > 1.



Estimating |v |2. Taking the conjugate of the equation ibu − v = f , then
multiplying the new equation by −v and integrating over Ω, we find

ib
∫

Ω
ūv dx + |v |22 = −

∫
Ω

f̄ v dx .

Next, multiplying the equation ibv − k̂div(∇u + w) = g by −ū and
using Green’s formula, we find

−ib
∫

Ω
ūv dx = k̂

∫
Ω

(∇u + w) · ∇ū −
∫

Ω
ūg dx

= k̂
∫

Ω
|∇u + w |2 dx − k̂

∫
Ω

(∇u + w) · w̄ dx −
∫

Ω
ūg dx .

Now, thanks to Cauchy-Schwarz and Poincaré inequalities, one gets∣∣∣∣∫
Ω

(f̄ v + gū) dx
∣∣∣∣ ≤ |f |2|v |2 + |g|2|u|2 ≤ C0||U||H||Z ||H.

It then follows

|v |22 ≤ C0(||U||H||Z ||H + ||U||
1
2
H||Z ||

3
2
H)+k̂ |∇u + w |22.



Using the speeds equality constraint, one finds:

ǩ
∫

Ω
|∇u + w |2 dx ≤ C0(||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H) + k̂<

∫
Γ
ϕ∂ν ū dγ.

Using appropriate first order multipliers, one gets rid of the boundary
integral, and the claimed estimate follows. Applying the continuity of
the resolvent and Huang or Pruss exponential stability criterion, one
obtains the desired exponential stability of the semigroup.



Theorem 7: Polynomial stability
Suppose that the damping coefficient a is as in Theorem 6. Assume
that k

ρ1
6= 2µ+λ

ρ2
. The semigroup (S(t))t≥0 is polynomially stable, viz.,

there exists a positive constant M such that:

||S(t)Z 0||H ≤ M
||Z 0||D(A)

(1 + t)
1
2

, ∀Z 0 ∈ D(A).



Kirchhoff plate-wave

Joint work with Ahmed Hajej (U. Cergy-Pontoise, France) and
Zayd Hajjej (U. Gabes, Tunisia), JMAA 2019



Undamped Kirchhoff plate/ damped wave

Consider the following weakly coupled system of Kirchhoff plate and
wave equations:



utt − γ∆utt + ∆2u + αv = 0 in Ω× (0,∞)

vtt −∆v + vt + αu = 0 in Ω× (0,∞)

u = ∂νu = 0 on Γ0 × (0,∞)

∆u + (1− µ)B1u = 0 on Γ1 × (0,∞)

∂ν∆u − γ∂νutt + (1− µ)B2u = 0 on Γ1 × (0,∞)

v = 0 on Γ× (0,∞)

u(0) = u0 ∈ V , ut (0) = u1 ∈ H1
0 (Ω),

v(0) = v0 ∈ H1
0 (Ω), vt (0) = v1 ∈ L2(Ω).



Undamped Kirchhoff plate/ damped wave

Ω is an open set of R2 with regular boundary Γ = ∂Ω = Γ0 ∪ Γ1 such
that Γ0 ∩ Γ1 = ∅,
The constant γ > 0 is the rotational inertia of the plate and the
constant 0 < µ < 1

2 is the Poisson coefficient.
The boundary operators B1, B2 are defined by

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx ,

B2u = ∂τ

(
(ν2

1 − ν2
2)uxy + ν1ν2(uyy − uxx )

)
,

where ν = (ν1, ν2) is the unit outer normal vector to Γ and
τ = (−ν2, ν1) is a unit tangent vector.



Energy estimates.

Introduce the energy, (setting Pγu = u − γ∆u)

E(t) =
1
2

∫
Ω
{|P

1
2
γ ut |2 + |∆u|2 + |vt |2 + |∇v |2 + 2αuv}(x , t) dx .

We have:

E(t) ≤ Cα

(t + 1)
1
3

(
||u0||2H3(Ω) + ||u1||2H2(Ω) + ||v0||2H2(Ω) + ||v1||2H1

0 (Ω)

)
.

FDM, interpolation, good choice of functional inequalities,
Borichev-Tomilov criterion.



Damped Kirchhoff plate/ undamped wave



utt − γ∆utt + ∆2u + αv + ut = 0 in Ω× (0,∞)

vtt −∆v + αu = 0 in Ω× (0,∞)

u = ∂νu = 0 on Γ0 × (0,∞)

∆u + (1− µ)B1u = 0 on Γ1 × (0,∞)

∂ν∆u − γ∂νutt + (1− µ)B2u = 0 on Γ1 × (0,∞)

v = 0 on Γ× (0,∞)

u(0) = u0 ∈ V , ut (0) = u1 ∈ H1
0 (Ω),

v(0) = v0 ∈ H1
0 (Ω), vt (0) = v1 ∈ L2(Ω).



Energy estimates.

Introduce the energy

E(t) =
1
2

∫
Ω
{|Pγut |2 + |∆u|2 + |vt |2 + |∇v |2 + 2αuv}(x , t) dx .

We have:

E(t) ≤ Cα

(t + 1)
1
4

(
||u0||2H3(Ω) + ||u1||2H2(Ω) + ||v0||2H2(Ω) + ||v1||2H1

0 (Ω)

)
.



And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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